9 research outputs found

    Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit

    Get PDF
    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress. (Résumé d'auteur

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice

    No full text
    This open access book presents simple, robust pre-field screening protocols that allow plant breeders to screen for enhanced tolerance to heat stress in rice. Two critical heat-sensitive stages in the lifecycle of the rice crop are targeted – the seedling and flowering stages – with screening based on simple phenotypic responses. The protocols are based on the use of a hydroponics system and/or pot experiments in a glasshouse in combination with a controlled growth chamber where the heat stress treatment is applied. The protocols are designed to be effective, simple, reproducible and user-friendly. The protocols will enable plant breeders to effectively reduce the number of plants from a few thousands to less than 100 candidate individual mutants or lines in a greenhouse/growth chamber, which can then be used for further testing and validation in the field conditions. The methods can also be used to classify rice genotypes according to their heat tolerance characteristics. Thus, different types of heat stress tolerance mechanisms can be identified, presenting opportunities for pyramiding different (mutant) sources of heat stress tolerance

    Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice

    Get PDF
    This open access book presents simple, robust pre-field screening protocols that allow plant breeders to screen for enhanced tolerance to heat stress in rice. Two critical heat-sensitive stages in the lifecycle of the rice crop are targeted – the seedling and flowering stages – with screening based on simple phenotypic responses. The protocols are based on the use of a hydroponics system and/or pot experiments in a glasshouse in combination with a controlled growth chamber where the heat stress treatment is applied. The protocols are designed to be effective, simple, reproducible and user-friendly. The protocols will enable plant breeders to effectively reduce the number of plants from a few thousands to less than 100 candidate individual mutants or lines in a greenhouse/growth chamber, which can then be used for further testing and validation in the field conditions. The methods can also be used to classify rice genotypes according to their heat tolerance characteristics. Thus, different types of heat stress tolerance mechanisms can be identified, presenting opportunities for pyramiding different (mutant) sources of heat stress tolerance

    Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice

    No full text
    Intensive breeding programs have increased rice yields, strongly contributing to increasing global food security during the post-green revolution period. However, rice productivity has reached a yield barrier where further yield improvement is restricted by inadequate information on the association of yield components, and morphological and physiological traits with yield. We conducted a field experiment to evaluate (i) the contribution of morphological and physiological traits to yield and (ii) quantify the trade-off effect between the yield components in rice, using a mini-core collection of 362 rice genotypes comprising geographically distinct landraces and breeding lines. Our data point towards multiscale coordination of physiological and morphological traits associated with yield and biomass. Considerable trait variations across the genotypes in yield ranging from 0.5 to 78.5 g hill−1 and harvest index ranging from 0.7% to 60.7% highlight enormous diversity in rice across the globe. The natural elimination of trade-off between yield components revealed the possibility to enhance rice yield in modern cultivars. Furthermore, our study demonstrated that genotypes with larger sink sizes could fix more carbon to achieve a higher yield. We propose that the knowledge thus generated in this study can be helpful for (a) trait-based modeling and pyramiding alleles in rice-breeding programs and (b) assisting breeders and physiologists in their efforts to improve crop productivity under a changing climate, thus harnessing the potential for sustainable productivity gains

    Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice

    Get PDF
    Intensive breeding programs have increased rice yields, strongly contributing to increasing global food security during the post-green revolution period. However, rice productivity has reached a yield barrier where further yield improvement is restricted by inadequate information on the association of yield components, and morphological and physiological traits with yield. We conducted a field experiment to evaluate (i) the contribution of morphological and physiological traits to yield and (ii) quantify the trade-off effect between the yield components in rice, using a mini-core collection of 362 rice genotypes comprising geographically distinct landraces and breeding lines. Our data point towards multiscale coordination of physiological and morphological traits associated with yield and biomass. Considerable trait variations across the genotypes in yield ranging from 0.5 to 78.5 g hill−1 and harvest index ranging from 0.7% to 60.7% highlight enormous diversity in rice across the globe. The natural elimination of trade-off between yield components revealed the possibility to enhance rice yield in modern cultivars. Furthermore, our study demonstrated that genotypes with larger sink sizes could fix more carbon to achieve a higher yield. We propose that the knowledge thus generated in this study can be helpful for (a) trait-based modeling and pyramiding alleles in rice-breeding programs and (b) assisting breeders and physiologists in their efforts to improve crop productivity under a changing climate, thus harnessing the potential for sustainable productivity gains

    Abstracts of International Conference on Innovations in Business Management

    No full text
    This book contains abstracts of the various research ideas of the academic community and practitioners of management presented at the International Conference on Innovations in Business Management (ICIBM 2020). The researchers have contributed toward various themes of the conference such as sustainable economy, supply chain, women-empowerment, export-import, microfinance, government policies, etc. We strongly believe that it will open up further scope for in-depth research in various disciplines of business management. Best wishes to the participants to have detailed discussions on the above-said wide range of areas. Conference Title: International Conference on Innovations in Business ManagementConference Acronym: ICIBM 2020Conference Date: 16-17 January 2020Conference Location: ICFAI University, Dehradun, IndiaConference Organizers: ICFAI Business School, ICFAI University, Dehradun, India & University of Derby, United Kingdo
    corecore